
A Comparison of Use-Case Based and Checklist-
Based Reading: A Controlled Experiment

Abstract—Software quality can be defined as the customers’
perception of how a system works. Inspection is a method to
monitor and control the quality throughout the development
cycle. Reading techniques applied to inspections help reviewers to
stay focused on the important parts of an artifact when
inspecting. However, many reading techniques focus on finding
as many faults as possible, regardless of their importance. Use-
case based reading helps reviewers to focus on the most
important parts of a software artifact from a user’s point of view.
This study presents an experiment, which compares use-case
based and checklist-based reading.

Keywords—Controlled experiment; empirical study; reading
techniques; software inspection

I. INTRODUCTION
Software inspections have since its inception [1] more than

25 years ago spawned quite some interest both from the
research community and industrial practice. The research
includes changes to the inspection process, e.g. [2], support to
the process, e.g. [3] and empirical studies, e.g. [4]. The
suggested improvements include active design reviews [5] and
perspective-based reading [6]. Industry has studied the
benefits of conducting software inspections [7].

The objective of this study is to compare and hence
evaluate how well the use-case based reading performs in
comparison to other methods. The study presents a controlled
experiment where use-case based reading is compared to
checklist-based reading.

II. EXPERIMENT PREPARATION
This section describes the preparation needed to conduct

the experiment and the subjects acting in the experiment. The
experimental package developed for this experiment can be
found at http://www.thewebsite.com
A. Subjects

The students participating as reviewers in the study were
22 third-year Software Engineering and Management
Bachelor’s students at University of Gothenburg in Sweden.
Many of the students have experience from software
development. As part of their bachelor degree, they have
obtained practical training in software development.

The objective of the experiment, from an educational
perspective, was that the students should be exposed to an
empirical study at the same time as they were introduced to
some of the on-going research in the area.

B. Inspection Material
The material consists of four documents in structured text:

one requirements document, one design document written in
the specification and description language (SDL), one use
case document, and one checklist.

The requirements document was written in natural
language (English). The document is used as a reference
document to show how the system is meant to work. The
checklist consists of 18 check items and is based on a checklist
presented by Laitenberger et al. [8]. It would have been
preferable to use a checklist from an industrial application to
check this kind of design, but no such checklist was found.
Therefore, we used a modified version of a checklist utilized
in experiments with the purpose of comparing Use-Case
Based reading and Checklist-Based reading. The checklist
items were modified to fit the taxi management system and
they were sorted in order of importance.

The subjects inspected the design document using the
requirements document as a reference. To guide the reading
they used either a use-case document or a checklist. The
design consists of software modules of a taxi management
system and descriptions of signals in-between these modules.
The modules are one taxi module for each vehicle, one central
module for the operator and one communication link, see
Figure 1. Furthermore, the design document consists of two
message sequence charts (MSC) [9], which show signalling
among the modules for two different cases, one normal case
and one special case. The use cases are written in task notation
[10] and are prioritized using the analytic hierarchy process
(AHP) [11] from a user’s point of view, i.e. the function of the
first use case is the most important to the user while the last
use case is least important. The use case document contains 19
use cases. The design document contains 38 faults.

Thomas Thelin, Per Runeson 8

items (provided in appendix) and is based on a checklist presented by Laitenberger et al. [21]. It
would have been preferable to use a checklist from an industrial application to check this kind of
design, but no such checklist was found. Therefore, we used a modified version of a checklist uti-
lized in experiments with the purpose of comparing CBR and PBR. The checklist items were
modified to fit the taxi management system and they were sorted in order of importance.

The subjects inspected the design document using the requirements document as a reference. To
guide the reading they used either a use case document or a checklist. The design consists of soft-
ware modules of a taxi management system and descriptions of signals in-between these mod-
ules. The modules are one taxi module for each vehicle, one central module for the operator and
one communication link, see Figure 2. Furthermore, the design document consists of two mes-
sage sequence charts (MSC) [14], which show signalling among the modules for two different
cases, one normal case and one special case. The use cases are written in task notation [23] (see
Figure 3) and are prioritized using the analytic hierarchy process (AHP) [39] from a user’s point
of view, i.e. the function of the first use case is the most important to the user while the last use
case is least important. The use case document contains 24 use cases.

The design document contains 38 faults, of which two are new faults found during the experi-
ment and eight are seeded faults injected by the person who developed the system. The 28 others

FIGURE 2. The taxi management system. The boxes represent software modules and the
circles represent users. The software for the database and accounting system is not
implemented in the first version.

Taxi: Log in

Purpose: The driver logs on to the system to acknowledge presence and to be able to receive orders.

Tasks:
1. The car is in state “Offline”.
2. The driver swipes the identification card in the terminal in the car.
3. The terminal sends the position and driver information to the central.
4. The central confirms the log in.
5. The car sends the position (zone).
6. The central starts sending overview information on all zones.
7. The car is in the state “Available”.

Variants:
1b. The car is not in the state offline. There can be only one driver logged in at the same time in the
car terminal. The car has to be in state “Offline” in order to allow new logins.
4b. The card is not valid. The central rejects the driver. The driver and the car are not logged in and
remain in state “Offline”.

FIGURE 3. Example of a use case written in task notation [23]. The use case describes the login
procedure for a taxi driver.

Comm.link CentralTaxi

Database

Operator

Customer

Accounting

Driver

Figure 1. The taxi management system.

C. Fault Classification
The faults were divided into three classes depending on the

importance for the user, which is a combination of the

probability of the fault to manifest as a failure, and the
severity of the fault considered from the user’s point of view.
Class A faults – The functions affected by these faults are
crucial for the user, i.e. the functions affected are important for
the user and are often used. An example of this kind of faults
is: the operator cannot log in to the system.
Class B faults – The functions affected by these faults are
important for the user, i.e. the functions affected are either
important and rarely used or not as important but often used.
An example of this kind of fault is: the operator cannot log out
of the system.
Class C faults – The functions affected by these faults are not
important for the user. An example of this kind of fault is: a
signal is missing in a table summarizing all signals, but it is
correctly defined in the section that describes the signals.

The design document contains 13 class A faults, 14 class B
faults and 11 class C faults. No syntax errors like spelling
errors or grammatical errors were logged as faults. One person
made the classification of the faults prior to the experiment.

III. EXPERIMENTAL PLANNING

A. Variables
Three types of variables are defined for the experiment,

independent, controlled, and dependent variables.

a) Independent Variable: The independent variable is
the reading technique used. The experiment groups used either
Use-Cased Based Reading or Checklist-Based Reding.

b) Controlled Variable: The controll variable is the
experience of the reviwers and it is measured on an ordinal
scale. The reviwers were asked to fill in a questionnare
comprising seven questions.

c) Dependent Variables: The dependent varialbles
measured are faults. The four variables are: (1) Number of
faults found by each reviwer, (2) Number of faults found by
each experiment group, (3) efficiency (faults/hour) and is
measured as: 60*(number of fault found/inspection time which
is 45 min), and (4) effectivness (detection rate) and is mesured
as: number of faults found/total number of faults.

B. Hypotheses
The general hypothesis of the experiment is that Use-Case

Based Reading is more efficient and effective in finding faults
of the most critical fault classes, i.e. Checklist-Based Reading
is assumed to find more faults per time unit, and to find a
larger rate of the critical faults.

The dependent variables are analyzed to evaluate the
hypotheses of the experiment. The main null and alternative
hypotheses [12] are stated below. These are evaluated for all
faults, class A faults and class A&B faults. The hypotheses
concern efficiency, effectiveness and fault detecting
differences:

• H0 Eff – There is no difference in efficiency (i.e.
found faults per hour) between the reviewers
applying use cases and the reviewers using a
checklist.

• H1 Eff – There is a difference in efficiency between
the reviewers applying prioritized use cases and the
reviewers using a checklist.

• H0 Rate – There is no difference in effectiveness (i.e.
rate of faults found) between the reviewers applying
use cases and the reviewers using a checklist.

• H1 Rate – There is a difference in effectiveness
between the reviewers applying use cases and the
reviewers using a checklist.

• H0 Fault – The reviewers applying use cases do not
detect different faults than the reviewers using a
checklist.

• H1 Fault – The reviewers applying use cases detect
different faults than the reviewers using a checklist.

C. Design
The students were divided into two groups, one group

using Use-Case Based Reading and one group using
Checklist-Based Reading. Using the controlled variable to get
a block design, the students were randomized, resulting in 11
students in the Use-Case Based Reading group and 11 students
in the Checklist-Based Reading group. A questionnaire with
seven questions was used to explore the students’ experiences
in programming, inspections, SDL, use cases and taxi systems.
The questionnaire showed that the students had similar types
of backgrounds based on the experience.

The instrumentation of the experiment consists of one
requirements document, one design document, one use case
document, one checklist and one inspection record. The
inspection record contains fields to collect all the data used to
analyze the experiment.
D. Threats to Validity

The threats to the validity of the experiment are analyzed
below. As the purpose of the study is to compare two reading
techniques, and more studies are needed for generalization
purposes, the threats to internal and construct validity are most
critical. When trying to generalize the results to a more
general domain, the external validity becomes more important
[13].

Threats to conclusion validity are considered under control.
Robust statistical techniques are used, measures and treatment
implementation are considered reliable. Random variation in
the subject group is blocked, based on the controlled variable.

Concerning the internal validity, the risk of rivalry
between groups is considered the largest one. Their grade on
the course was not affected by the performance in the
experiment. This could lead to lack of motivation. The
students were introduced and motivated to empirical research
before the experiment. In order to discuss the results in the
course, they had to give good inputs to the empirical work.
Furthermore, the students were randomly assigned. Thus, the
threat of lack of motivation was minimized in the experiment.

Threats to the construct validity are not considered very
harmful. The development of the textual requirements
document was performed after the development of the use

cases. Hence, there is a risk that the use cases may have
affected the requirements document to make it suitable for the
use cases. On the other hand, the inspection object was the
design document and the requirements document was just a
reference.

Concerning the external validity, the use of students as
subjects is a threat. However, the students are third year
bachelor students in software engineering and management.
Another threat to the external validity is the design document
used in the experiment. Only one domain is considered and the
size of the inspected document is in the smaller range for real-
world problem, even though it describes a real-world problem.

IV. EXPERIMENTAL OPERATION
The experiment was run over a two-hour lecture during

spring 2014. During the first hour, the students were given an
introductory of the taxi management system. All students were
reading the same material of the system, which included the
same material for both groups. Then they were divided into
two groups depending on the method they were going to use
during the inspection experiment. The second hour included
performing the experiment and the students were not allowed
to discuss with each other.

The package for the experiment contained:
1. Inspection record, including:

a. A description of the fault classification
b. A fault log. For each fault found, the

students logged the use case/checklist
item used, the class and severity of the
fault.

2. A requirements document
3. A design document
4. Either use-case document or an inspection

checklist
The instructions for the students were:
1. The textual requirements are assumed to be correct
2. Read through all documents briefly before starting to

inspect
3. The inspection experiment is finished when

everything is checked or after 45 minutes. When

finished, verify that the logged data seem to be
correct and hand them in.

After each student handed in their inspection record, an
inspection moderator checked for errors and missing data
in the record in order to get as accurate data as possible.

REFERENCES
[1] Fagan, M. E. “Design and Code Inspections to Reduce Errors in

Program Development”, IBM System Journal, 15(3):182-211, 1976.
[2] Bisant, D. B. and Lyle, J. R., “A Two-Person Inspection Method to

Improve Programming Productiv- ity”, IEEE Transactions on Software
Engineering, 15(10):1294-1304, 1989.

[3] Basili,V.R.,Green,S.,Laitenberger,O.,Lanubile,F.,Shull,F.,Sørumgård,S.
andZelkowitz,M.V., “The Empirical Investigation of Perspective-Based
Reading”, Empirical Software Engineering: An In- ternational Journal,
1(2):133-164, 1996.

[4] Basili,V.R.,Shull,F.andLanubile,F.,“BuildingKnowledgethroughFamilie
sofExperiments”, IEEE Transactions on Software Engineering,
25(4):456-473, 1999.

[5] Parnas, D. L. and Weiss, D. M., “Active Design Reviews: Principles and
Practices”, Proc. of the 8th International Conference on Software
Engineering, pp. 418-426, 1985.

[6] Shull, F., Ioana, R. and Basili, V. R., “How Perspective-Based Reading
Can Improve Requirements In- spections”, IEEE Computer, 33(7):73-
79, 2000.

[7] Weller, E. F., “Lessons from Three Years of Inspection Data”, IEEE
Software, 10(5):38-45, 1993.

[8] Laitenberger, O., Atkinson, C., Schlich, M. and El Emam, K., “An
Experimental Comparison of Read- ing Techniques for Defect Detection
in UML Design Documents”, Journal of Systems and Software,
53(2):183-204 2000.

[9] ITU-T Z.120 Message Sequence Charts, MSC, ITU-T Recommendation
Z.120, 1996.

[10] Lauesen, S., Software Requirements – Styles and Techniques, Addison-
Wesley, UK, 2002.

[11] Saaty, T. L. and Vargas, L. G., Models, Methods, Concepts &
Applications of the Analytic Hierarchy Process, Kluwer Academic
Publishers, Netherlands, 2001.

[12] Montgomery, D., Design and Analysis of Experiments, John Wiley &
Sons, USA, 2000.

[13] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B. and
Wesslén, A., Experimentation in Software Engineering: An Introduction,
Kluwer Academic Publisher, USA, 2000.

